Course 31380: Intelligent System

Page 1

Checkers game

[image: image19.png]

[image: image20.wmf]Row

Col

X

Y

(

0

,

0

)

(

0

,

0

)

(

5

,

0

)

(

7

,

7

)

Mandatory Assignment 2:

[image: image1.png]

Course 31380: Intelligent Systems

 10/12/2004

Ørsted

Technical University of Denmark

Lyngby, Denmark

2I.
Project

2A.
Explanation of the rule and what has been implemented

3B.
Overview of the whole project

3II.
Jess

3C.
Module

4D.
Facts

4E.
Piece fact

4F.
Movement fact

5G.
Rules

51)
Movement module

62)
Reasoning module

6H.
Communication between Java and Jess

6III.
Application

6A.
Player handling

7B.
Command mode

73)
Move and Jump instruction

84)
Print instruction

85)
Jess instruction

86)
Connect, smr-move, smr-jump instruction

97)
Exit instruction

9C.
Pattern design

91)
The Checker

92)
The Grid

103)
The Board

104)
The Piece

115)
Class Overview

11D.
Dialogs

111)
Main dialog

122)
Select Dialogs

13Bibliography

15Appendix

Introduction

This report is the documentation about a checkers game. This project aimed to use an Expert System language in order to a non-trivial problem. This assignment has been divided into two groups: the first one programmed a Small Mobil Robot with the intention of moving a piece on the live board. The second group interfaced the checkers and tried to realise an A.I., which make the game’s decision. This has been done with a combination of Java and Jess coding, that communicates during the game. The interface and the board have been implemented in Java and the actual A.I. has been implemented in Jess. The A.I. should be able to follow the game rules and move accordingly.
I. Project

A. About the rule

The Checkers is a board game like many others. The board itself looks like a chessboard with black and white squares in an 8 by 8 length. All the pieces are alike. When the game begins, each player gets 12 pieces, which are called “men”. The pieces may only be placed on black squares, and can only be moved diagonally on these squares.

[image: image21.png]

Displacing a piece can be done in two ways, either by moving a piece diagonally on a square forward or by “eating” an opponent’s piece. This can only be done if an opponent’s piece is standing on a diagonal square in front of your piece (Fig 1.1) and if the square behind the opponent’s piece is free. Then you can jump to the free square behind the opponent’s piece and remove it from the board. Each player can only move one piece at the time. It is only possible to move a piece more than once if it the piece is able “eat” a second time like the one showed in figure 1.1, where red can eat two white pieces. Moreover, if a piece is able to eat, he has to do so. Otherwise, the piece, that chooses not to eat, is removed from the game.
When a piece reaches the other side of the board or also called the “backline”, the piece is upgraded to a “king”; this is indicated by a yellow circle on top of the piece. This upgrade gives to the piece the privilege to move backwards and to “eat” the piece behind it, which is not possible for the "men”.

The game’s object is, like many strategies games, to remove all the opponent pieces from the board. Who ever do this, wins the game.

We have implemented most of these rules into our program. We have implemented both “move” and “eat” function for a human player and for the Jess part. However, we had some problem with the “multi-eat” function. Jess may prefer to make a move instead of a “eat”. In this case, the piece is not removed from the game.

B. Overview of the whole project

The project is to implement a playable checkers game. Jess implements a simple AI. The game is shown by an interface on the computer and on a live game where the pieces are physically moved by an SMR. The project has been divided in two parts. A group handles the movement of the SMR on real sized board. The SMR follows the black lines on the game board. The SMR should know its current position and be able to find its way to get around and to move or remove a piece.

The second group that also develops the interface human–computer implements the simple AI. This task will be covered in this report.

[image: image22.png]

The communication between the interface program and the SMR program will be request-based. The simple AI program developed in Jess/java will send a “move” or a “jump” action followed by the coordinates of the piece. This information is enough for the SMR program to calculate what it should do.

[image: image23.png]

The coordinate system is different between the two programs. To locate the piece on the board interface, the origin is placed at the top corner left. For the SMR program, the origin is at the centre of the board, and the axes are rotated to 45 degrees. These coordinates was easier to use for the SMR calculation.

II. Jess

C. Module

The jess implementation of our program, handles the AI of checkers game. The program is divided into three modules: Main, Movement, and Reasoning.

[image: image2]
1) Main

The first module is the default one. It only contains the instance of the 24 pieces.

2) Movement

The second module is “movement”, which manages the possibilities for each piece. This module does not make any actions. It only checks what movements are possible to do and anticipate the future actions. Therefore, it verifies the possible movements that the opponent may perform. Consequently, it makes it able to detect any danger of being eaten by an opponent piece and prevents the move.

The “movement” module contains six rules, which handles these functions. The moving and eating are managed in different rules in this module, this is also the case for checking, if it is possible to be eaten by the opponent.

3) Reasoning

This last module used in the jess part takes care of the moving part; it finds out what piece to move and applies the action. The piece to be moved is decided by this module from the information gather in previous module.

Dividing the program into two modules enables the program to verify more precisely where to move. Moreover, the degrees of anticipation could be change independently of the action chosen. Finally, the division by module decrease the time of calculation made by jess. Indeed the fact base is also divided.

D. Facts

The jess program uses two main kinds of facts: the movement, and the piece instance (that could be considered as facts).

4) Piece fact

The piece instances are related to the java class Piece. The piece’s instance wraps the information about a piece: number, colour, position. Another value is the level that corresponds to two things: how many moves this piece is anticipated and if the piece’s level is above the level zero, the piece is a virtual one, which means that the piece does not really exist on the board.

5) Movement fact

The movement facts are issue from a template. This latter is stored in the movement module and contains the following slot:

· The piece actor of the movement.

· The action (either “move” or “eat”) tells what is done in this movement.
· The slot Next indicates the square where the piece can move to.

· nextNext indicates the square it can jump to, if the action is a “eat”.

· point: the number of point given for this action.

· numberOfAction: is the number of action in the future it can do.

· level is how far into the future this movement is calculated.

· pieceEaten contains information about the piece it can eat, if the action is a “eat”.

· Multislot says if it is possible to do a “multi-shot”. In this case, the value of the slot is the address of the next fact.

E. Rules

The different modules contains rules, these rules process the information to get the parts they need. Therefore, the AI can play the game.

6) Movement’s rules

The “movement” module contains the rules that calculate the different moves that can be done. The first rule in this module is named “can_move”. As the name implies it determines the movements from a piece position. The rule has a trigger fact, which is asserted by the java program, this fact contains information about the group of pieces that the rule should be looked at. This group is determined by the level of the piece is and the colour it wore.

The rule will then trigger, if there is no piece on any next squares that has level lower than it does. If not, the next location is check if it is inside the board by the java function “isLegal”. The rule fires if all these information are present and correct.

If the rule fires, the Right Hand Side attributes a multiplication factor one if the piece is owned by the player who has the turn or minus one otherwise. So that, the point attributed to an action will be negative if the piece is an opponent. If the next move makes the piece a king, the movement would receive more point than an ordinary move.

The last thing to be done is to assert a new piece with the same information on the next square with the level increased by one. A movement fact is then asserted with the above information. These facts are then related to each other. Therefore, it is possible to trace the pieces’ movement.

The “can_eat” rule has some similarity with “can_move” rule. The main difference is that it is not the next square but the next-next square that has to be free. The opponent’s piece with a lower level than the player’s piece has to be on that next square.

When the rule fires, the actions are identical to “can_move”. The only difference is that it gets more points than a simple “move” action.

The last rule that checks for possible movements is the “multi_shot”. This rule fires if it is possible to eat more that one opponent piece within the same turn. The rule trigger if there are two movements that are able to “eat” related by the same piece. If these conditions are meet, the rule fires. The two pieces movements are then combined to one movement with more points.

The rule “priority” retracts the movement that will probably be not executed. For example, if a piece make two moves is front of an opponent, the second move will probably not happens because the piece will be eaten first.

The “update” rule forwards the point of the anticipated movement to the original one.

7) Reasoning’s rule

The rules in this module try to determine and apply the best of the possible actions. The “max” rule looks for the movement with the highest point. This rule starts with a triggering fact (find_max ?curent $?old_piece). Where ?curent variable initially contains the value of -1000. When a movement facts and has a highest point, this value is updated. When the maximum is reached, the jess program continues to the next rule “Control”.

This rule is the one that actually applies the movement. This is done by firing the movement with the highest point, and then the action is performed. If it is an “eat”, the java method jump() is invoked. If it is a “multi-shot”, the operation is repeated. If the action is a “move” then the move() method is invoked.

The last rules of the reasoning module are the “Remove” and “cleanup” rule. This latter are used to remove the facts that are no longer used.

F. Communication between Java and Jess

The two languages need to communicate each other for this to work. Fortunately, the Jess language possesses a high degree of inter-connectivity with the java code. The way the jess can communicate with a java method is to use (call) instruction. It enables the jess program to invoke different method or fields in java.
In a similar way, the java program can inquire for the individual facts in the jess program, store the result of the Jess query, or execute any jess command. This could be done by using the Rete class.

III. Application

The language used to implement this checker game has been the Java. This language allows to handle graphical component and to interact with an expert system language such as Jess. This latter has the same functionality than the Clips language but comport additional routine to interact with the java. The core of the checker reasoning part is purely developed in Jess. The different command and results are implemented in Java. The whole program may be launched by the following instruction:

%java –classpath “.;jess.jar;jesssmr.jar;checkers.jar” checkers.Cherker

G. Player handling

As a result, a dialog will open enquiring for the game‘s mode.

[image: image3.png]@ Choase amode
Humen vs Humen

[image: image24.png]o] s) [[om

At that moment, the user can choose between three modes:

· Human vs. Human

· Human vs. Jess

· Jess vs. Jess

The design to implement the player was inspired from the Object-Oriented Software Development Using java book in chapter 11.3 (Ref. 1). Two player objects implements an abstract method play() from the Player class. Both of them extend the Thread Java Foundation Class (JFC). Consequently, the player that has not the turn wait() until he is notify() by it opponent. This “passing the baton” technique (Ref 2) prevents both threads to access the critical section (the board) at the same time. Mutual exclusion is then ensured. When a player object is constructed, his name and his colour are passed in argument to the constructor.

[image: image25.wmf]Row

Col

X

Y

(

0

,

0

)

(

0

,

0

)

(

5

,

0

)

(

7

,

7

)

[image: image4.emf]+play() : void

+hasTurn():void

-turn : int

-next:Player

«abstract»

Player

+play() : void

-color : bolean

-id : String

Human

+play() : void

-color : bolean

-id : String

Jess

Thread

If the player choose one of the two first mode, a prompt CMD> will appear in the console.

H. Command mode

The following instructions are allowed:

· move

· jump

· print

· connect

· SMR-move

· SMR-jump

· jess

· exit

8) Move and Jump instruction

Both move and jump instructions ask for a piece number. Once enter by the user, the piece is search on the board list. If the piece is not present or cannot do any movement, an error is returned. If the piece is successfully found, some information about that piece is printed and their possible movements are listed. Then, the player has to choose where he wants to move the piece to. If the corresponding movement is correct, the action is proceeding on the board and the next player hasTurn(). The figure (3.3) shows an example of two movement and jump action at the beginning of the game.

[image: image5.png]Invite de commandes - java -cp

[CMD uhite >move
Select a piece @

nunber :10

Inen white 18 on Square <5, 2>

posible movement:
fsquare ¢4, 13

[Square <4; 3>

Select a square :

rou 14

col 1

[cMD ved >move

Select a piece @

hunber 19

Inen red 9 on Square (2. 3>

posible movement:

[square <3, 43

[Square <3; 2

Select a square :
3

Inen white 18 on Square <4, 1)

posible_junp:
Inen red 9" on Square (3. 2>
Select a piece @

hunber 19

Inen red 9 on Square (3. 2>
CHD wod >

9) Print instruction

For debugging purpose, a print command has been implemented.

The correct syntax is:

print <object>

Where <object> is either “board” or “grid” or “piece”

Accordingly, the program will display information about the pieces remaining on the board, the existing square or a special piece. Latter, this command has been replaced by a dialog window (Fig 3.7).

10)
Jess instruction

This command is also for debugging purpose. Indeed, it allows the user to enter some command and the Jess module will directly interprets them. To exit jess and return in the command mode, the instruction “quit” has to be used.

11) Connect, smr-move, smr-jump instruction

The first of these three commands will try to contact a connected SMR. To make this connection possible, the user has first to open a new terminal and to make a connection via SSH to the SMR. If successful, the different packages are loaded. Once this connection established, the two commands smr-jump and smr-move could be used.

Smr-move instruction will request the SMR to displace a piece present on the real board into a new position. The smr-jump will send the request to remove a piece from the physical board and to displace the piece behind. For more explanation about this command and about the way the SMR executes a move, you may have a look to the twin report from the group 12.

12) Exit instruction

This instruction will exit the command mode and leaves the hand to the opponent.

This mode of game allows to fallow step by step the execution of the program but it have to be improve for a real game purpose. Some basic verifications are not made in this interface because it was easier to test and develop the program in this way. The rule that have not been implemented for example that a player can skip his turn. This thing was not allowed by the checkers rule. A second verification that is not made is that in SMR connection mode, unconventional movements can be applied. I.e. any piece may be move anywhere. However, more controls are present on the move and jump command.

I. Pattern design

The overall design chosen to implement the program is given by the figure 3.5. The general idea was to have three singletons. This means a class with a unique referenced object. This condition involves making the constructor private, declaring the single instance private inside the class itself, and adding an accessor to this instance. This technique has been used to implement the checkers, the board and the grid class.

13) The Checker

This class is the entry point of the program (main () method) and stands for the game class. The class constructs the main dialogs and handle the user choice and the displays some feedback information inside a message box. Therefore, it inherits the JDialog JFC. Two panels compose this dialog: the checkers Grid and a FootPanel. This later is in fact an inner private class of the Checker. Its functions are to swap the turn and to highlight the player that has the turn.

The main method instantiates the player correspondingly to mode chosen by the user (Fig 3.1) and instantiates the grid and the board

14) The Grid

The main purpose of this class is to display the board. It is composed by 64 black and white squares. Each of them is identified by two coordinate system: Col and Row or X and Y. The first couple is used all over the game to identify the position of a square; the second are just used in the SMR request.

The inner class Square that extends Canvas implements each square. The fields of this class are the coordinate of the square and the piece (if any) on it. The background colour of the square is the colour attributed by the Grid. If the methods setFree is invoked, the square is redrawn with a round inside indicating the presence of a piece. The piece number is also written. If the piece is a king, a yellow inner square is draws.

[image: image6.emf]empty men

king

A special square outside refers to a factice square and has no coordinate. The default constructor creates this square. Otherwise, any square can be accessed by the static method getSquare(row: int, col: int).

A MouseListener has also been implemented: when the user clicks into a square, the position of the square is printed in the console.

15) The Board

The board is the representation of the whole 24 pieces. When this one is first declared, all the piece are instantiated, added into the Jess database, placed at their initial position and finally asserted into a LinkedList (parent of board class). Two methods are provided to select a piece from the list.

16) The Piece

This object represents a piece on a board and is used in both java and jess. The piece is defined by its position (on a Square), its colour, its number and its status (king or men). Each piece also knows their eight neighbour squares: the potential positions into which one the piece can move. These special squares are named fallowing scheme: the first letter stands for Previous or Next (this letter is repeated for two squares in advance.). The two last letters are for Left or Right Square. If one of these positions is not on the board, the outside square is returned. The figure 3.4 illustrates this notation.

[image: image7.emf]PPLS

PLS

PPRS

PRS

NNLS

NLS

NNRS

NRS

Some methods of the Piece class are specially implemented for the Jess compatibility. For example, the class implements the Serializable interface or PropertyChangeListener methods. This latter allows updating the jess database when a field is modified from the java program.

17) Class Overview

[image: image8.emf]+play() : void

+hasTurn():void

-turn : int

-next:Player

«abstract»

Player

+play() : void

-color : bolean

-id : String

Human

+play() : void

-color : bolean

-id : String

Jess

+ main(String[] argv) : void

+ win(Player) : void

+ r : Rete

-Player[] : Player

«singleton»

Checkers

jump(:Square)

move(:Square)

-color : boolean

-number : int

-king : boolean

-square : Square

Piece

+init() : void

#action : Action

«singleton»

Board

LinkedList

Thread

getSquare(int row, int col) : Square

-square[][] : Square

«singleton»

Grid

JPanel

Canvas

+isFree() : boolean

+setFree(:boolean)

-row : int

-col : int

-SQcolor : boolean

Grid.Square

SelectDialog

JDialog

Classes overview

Figure 3.5

J. Dialogs

This program is both dialog and command line based. Two principal dialogs represent the graphical part.

18) Main dialog

The main dialog is opened when the program starts and displays information about the piece position. This dialogs is implemented in the Checkers class.

[image: image9.png]

19) Select Dialogs

The second dialog is a kind of jess (facts) commands ameliorated. In fact, when this dialogs is opens, two jess queries are sent to the database and the results are displayed in the two tables. The first table represents all the movement calculated by Jess. The second shows the actual and probable future positions of the pieces.

Five inputs are present to enquire for specific movement in order to reduce the list of reply. Unfortunately, this option was foreseen, but has not been implemented. However, the widgets are leaved for next amelioration of the program.

[image: image10.png]Movement

Movement

Action

Point

Level

0

Number

Color
white

Sque
Square (2.

Next
Square 1. 4)

Point
11.0

[y

10

Actian

white

Sauare 5.

Sauere (4.3)

10

20

white

Sauare (2.

Squere 1.5

110

10

white

Sauare 5.

Sauere (4.5)

35

20

white

Saquare (2.

Sauere 1.2)

]

10

ed

Square 2.

Squere (3.6)

50

15

square
Square 5,

vitual
FALSE

Square (1.

FALSE

Square 6.

FALSE

Square 5,

FALSE

Square 2.

FALSE

Square (7.

FALSE

Conclusion

Thanks to the Jess version of Clips, we have implemented a simple AI. To fulfil the requirement established, some communication between Jess and Java were initially difficult. When these initial problems were solved, we manage build up a game board with a graphical user interface in Java. With this implementation, we were able to create a simple AI using the Jess program.

Some improvements could be to implement a more advanced version of the AI. It could look sharper at the way the game progress for each movement. It can perform and chose the movement that gives it the best possibility of winning the game. A Java improvement could be to remove the “cmd” instruction in human player, replacing it with mouse version, where you click on the piece you wants to move.

Bibliography

Ref 1: Object-Oriented Software Development Using Java,

International Edition (second Edition)

Xiaoping Jia,

667 p

Ref 2: Foundation of Multithreaded, Parallel and Distributed Programming,

Addisson Wesley,

Gregory R. Andrews,

664 p

Appendix

16Checker’s rule

16History

16Basics

16Overview

19End Game

19Glossary

22Source code

22build.xml

24checkers/Board.java

27checkers/Checker.java

32checkers/Grid.java

39checkers/Human.java

45checkers/Jess.java

53checkers/Piece.java

60checkers/Player.java

62checkers/SelectDialog.java

Checker’s rule
History

Many kinds of checkers are played around the world, with different board sizes and rules. The version presented here, sometimes called "Anglo-American Checkers," is the most popular form of the game in the United States and Great Britain.

Basics

Checkers is a two-player strategy game played on a 64-square checkered board.

Pieces
the object of the game is to capture or blockade all of the opponent's pieces. If neither player can accomplish this, the game is a draw.

[image: image11.png]

Each player begins with 12 single checkers, also known as men initially set up as shown:

Overview

Game Play

Beginning with Red each player moves one of his or her pieces per turn. Throughout these rules, a "piece" means either a "man"--a single checker, which is all that players have at the start of the game--or a "king," which is what a man becomes if it reaches the last rank.

A man may move one square diagonally forward--that is, toward the opponent--onto an empty square, as shown.

[image: image12.png]«

[image: image13.png]

If a square diagonally in front of a man is occupied by an opponent's piece, and if the square beyond that piece in the same direction is empty, the man may jump over the opponent's piece and land on the empty square. The opponent's piece is captured and removed from the board. The diagram shows two possible jumps by White and one possible jump by Red.

When a man reaches the last rank--the row of squares closest to the opponent--it becomes a king. A previously captured checker is placed on top of it as a crown to distinguish it from an ordinary man. Kings have the ability to move and capture the same way as men, but they also may move and capture backward.

[image: image14.png]

Captures and Multiple Captures

[image: image15.png]

A player must make a capture when able to do so, and may not make an ordinary noncapturing move. If, after making a capture, a piece is in a position to make another capture--either along the same diagonal or a different one--it must do so, all as part of the same turn. Capturing two opposing pieces in a turn is called a double jump, capturing three pieces in a turn is a triple jump, and so on. Triple jumps by a White man and a White king are shown in these two diagrams. (At Yahoo! multiple jumps are treated like multiple moves: If a checker jumps to a square from which it can make a further jump, its owner retains the turn after releasing the mouse button, and must then continue by making the next jump.)

[image: image16.png]

A piece may not end its move in a position from which an additional capture is possible (except during a move in which a man becomes a king, as explained below). Both men and kings may capture men, kings, or a combination of men and kings. A player who has more than one way to make a capturing move may make whichever capturing move he or she chooses; there is no requirement to capture the most pieces or the most kings, as in some forms of checkers. When a man moves or jumps to the last rank, its turn ends. Even if the man made a jump to get there, it may not continue jumping backward as a king on the same turn. For example, after White makes the jump shown in the first diagram, White's turn ends with the second position shown.

[image: image17.png]

Notation
[image: image18.png]

Checkers games are usually recorded by indicating the squares a piece starts and ends its move on, with "-" between the squares indicating a noncapturing move and "x" a capturing move. Squares are numbered as shown in the diagram at left.

End Game

Resignation
A player may resign (concede the game) at any time. At Yahoo!, this is done by clicking on the "Resigns" button.

Draws
If neither player can win, such as in endings with equal numbers of kings on the board, the game may end in a draw. A player may offer a draw at any time by clicking on the "Offer Draw" button.

Glossary

blockade

a position in which one player's pieces cannot move; one way to win

capture

the removal of one or more opponent's pieces by jumping over them

checkerboard
the 64-square checkered board used to pay checkers

crowning

the placement of a checker on top of a man that has reached the last rank to indicate promotion to king

double corner

a corner of the board in which there are two squares, each adjacent to the corner square, in play

double jump

a move in which two jumps are made

dyke square

squares 14 and 19; when 14 is occupied by White or 19 by Red, pressure is set up against the opponent's double corner

file

a vertical row of squares

jump
a two-square diagonal move in which the second square is initially vacant and the intervening square is occupied by an opposing piece, which is captured and removed from play

king
what a man becomes upon reaching the last rank; a piece that can move and capture backward as well as forward

king row

the first rank, where the opponent forms kings

man
a single checker (plural men)

move
having "the move" means to have the opposition

opposition
a timing factor held by whichever player has the ability to pursue the opponent; if the last two pieces on the board are two opposing kings separated by a single square, the player who just moved has the opposition; simple exchanges shift the opposition to the other player

piece
a checker; in these rules, a term specifically used to mean either a man or a king

pin
a situation in which a piece (often on the edge of the board) cannot move without being

captured

quadruple jump

a move in which four jumps are made

rank
a horizontal row of squares

resign
to concede the game

shot
a forced combination of moves in which a player gives up one or more pieces in order to capture even more pieces

single corner

a corner of the board in which there is just one square--the corner itself--in play

trap
a line of play that appears favorable on the surface but that will backfire

triple jump

a move in which three jumps are made

zugzwang
a position in which any move a player makes loses, even though the player might not be in trouble if it were the opponent's turn

Source code
	build.xml

 1 <?xml version="1.0" encoding="UTF-8"?>
 2 <!-- ant build file for getopt -->
 3 <project basedir="." default="all" name="checkers">
 4

 5 <!-- Properties -->
 6

 7 <property name="name" value="Checkers"/>
 8 <property name="src" value="src"/>
 9 <property name="build" value="build"/>
10 <property name="build.doc" value="${build}/api"/>
11 <property name="build.src" value="${build}/src"/>
12 <property name="packagenames" value="checkers.*"/>
13

14 <!-- Targets -->
15

16 <!-- Kill all the created directories -->
17 <target name="clean">
18 <delete dir="${build}"/>
19 <delete dir="${src}"/>
20 </target>
21

22 <!-- Prepare build directories -->
23 <target depends="clean" name="prepare">
24 <mkdir dir="${src}"/>
25 <mkdir dir="${build}"/>
26 <mkdir dir="${build.doc}"/>
27 <copy todir="${src}">
28 <fileset dir=".">
29 <include name="**/*.java"/>
30 <include name="**/main.clp"/>
31 <include name="**/build.xml"/>
32 </fileset>
33 </copy>
34 <move todir="${build.src}">
35 <fileset dir="${src}"/>
36 </move>
37 </target>
38

39 <!-- Build classes -->
40 <target depends="prepare" name="classes">
41 <copy todir="${build}">
42 <fileset dir=".">
43 <include name="main.clp"/>
44 </fileset>
45 </copy>
46 <javac classpath=".;jess.jar;jesssmr.jar" debug="off" destdir="${build}" optimize="on" srcdir="${build.src}"/>
47 </target>
48

49 <!-- Build jar archives -->
50 <target depends="classes" name="release">
51 <jar basedir="${build}" jarfile="Checker.jar"/>
52 </target>
53

54 <!-- Build the full JavaDocs -->
55 <target depends="prepare" name="javadoc">
56 <javadoc author="true" destdir="${build.doc}" doctitle="${name} JavaDoc" package="true" packagenames="${packagenames}" sourcepath="${build.src}" version="true" windowtitle="${name} JavaDoc"/>
57 </target>
58

59 <!-- Build everything -->
60 <target depends="release,javadoc" name="all"/>
61

62 </project>
63

	checkers/Board.java

 1 package checkers;

 2 import java.util.LinkedList;

 3 import java.util.ListIterator;

 4 import jess.*;

 5

 6 /**
 7 * The board is the representation of the whole 24 pieces. When this one is first declared, all the piece are instantiated, added into the Jess database, placed at their initial position and finally asserted into the parent LinkedList
 8 */
 9 public class Board extends LinkedList{

 10 static private Board board = new Board ();

 11

 12 /**
 13 * This method calls the super method.
 14 */

 15 private Board () {

 16 super ();

 17 }

 18 /**
 19 * This method is used to initilize the board.
 20 * @throws JessException if it is not able to execute the jess command
 21 */
 22 void init () {

 23 for (int number=0; number<12; number++) {

 24 boolean color=Piece.BLACK;

 25 for (int c=0; c<2; c++) {

 26 color = !color;

 27 String Jesscmd = "(definstance Piece " +

 28 "(new checkers.Piece "+ number +" "+Boolean.toString (color).toUpperCase () +")" +

 29 " dynamic)";

 30 try {

 31 Checker.r.executeCommand (Jesscmd);

 32 } catch (JessException e) {System.err.println (e);}

 33 Piece piece = Board.select (number,color);

 34 piece.init ();

 35 }

 36 }

 37 }

 38 /**
 39 * This method finds which piece is located in at specify square.
 40 * @return the piece if there is one else null.
 41 * @param row square"s row position
 42 * @param col square"s col position
 43 */
 44

 45 static public Piece select (int row, int col){

 46 ListIterator it = board.listIterator ();

 47 while (it.hasNext ()) {

 48 Piece piece = (Piece) it.next ();

 49 if ((piece.getSquare ().getRow() == row)

 50 && (piece.getSquare ().getCol() == col)) {

 51 return (Piece) piece;

 52 }

 53 }

 54 return null;

 55 }

 56

 57 /**
 58 * This method finds a spicified piece on the board if it exits
 59 * @return the piece if there is one else null.
 60 * @param number the number of the player"s piece looked for
 61 * @param color the color of the player"s piece looked for
 62 */
 63

 64 static public Piece select (int number, boolean color){

 65 ListIterator it = board.listIterator ();

 66 while (it.hasNext ()) {

 67 Piece piece = (Piece) it.next ();

 68 if (piece.getNumber () == number && piece.getColor() == color) {

 69 return (Piece) piece;

 70 }

 71 }

 72 return null;

 73 }

 74

 75 /**
 76 * This method count how many pieces a player has on the board.
 77 * @return how many pieces the player is left with.
 78 * @param color the color of the player.
 79 */
 80

 81 static public int count (boolean color){

 82 ListIterator it = board.listIterator ();

 83 int count = 0;

 84 while (it.hasNext ()) {

 85 Piece piece = (Piece) it.next ();

 86 if (piece.getColor() == color) {

 87 count ++;

 88 }

 89 }

 90 return count;

 91 }

 92

 93 /**
 94 * This method takes an object turns it into a string
 95 * @return a string that contains the text version of containts in the fact address
 96 */
 97

 98 public String toString () {

 99 ListIterator it = listIterator ();

100 String retString = new String();

101 while (it.hasNext ()) {

102 retString += (Piece) it.next ();

103 }

104 return retString;

105 }

106

107 /**
108 * This method is used get all the information there is about the board.
109 * @return the information about the board.
110 */
111

112 static public Board getInstance () {

113 return board;

114 }

115 }

116

117

	checkers/Checker.java

 1 package checkers;

 2

 3 import jess.*;

 4

 5 import java.util.LinkedList;

 6 import java.util.ListIterator;

 7 import java.util.StringTokenizer;

 8 import java.io.InputStreamReader;

 9 import java.io.BufferedReader;

 10 import java.io.FileInputStream;

 11 import java.io.FileNotFoundException;

 12 import java.io.IOException;

 13 import javax.swing.*;

 14 import java.awt.*;

 15 import java.awt.event.*;

 16

 17 /**
 18 * This class is the entry point of the program (main () method) and stands for the game class. The class constructs the main dialogs and handle the user choice and the displays some feedback information inside a message box.
 19 */
 20 public class Checker extends JDialog {

 21 static Rete r = new Rete();

 22 boolean isOver = false;

 23 private FootPanel footPanel;

 24 boolean turn;

 25 static Player player[] = new Player[2];

 26 static private Checker checker = new Checker();

 27

 28 /**
 29 * This method is calling the methods in the other class to initilize the game and it runs the main module of Jess.
 30 */
 31 public Checker() {

 32 super();

 33 String title = "Checker";

 34 String laf = UIManager.getSystemLookAndFeelClassName();

 35 try {

 36 UIManager.setLookAndFeel(laf);

 37 } catch (UnsupportedLookAndFeelException exc) {

 38 System.err.println("Warning: UnsupportedLookAndFeel: " + laf);

 39 } catch (Exception exc) {

 40 System.err.println("Error loading " + laf + ": " + exc);

 41 }

 42

 43 addWindowListener(new WindowAdapter() {

 44 public void windowClosing(WindowEvent evt) {

 45 System.exit(0);

 46 }

 47 });

 48 setResizable(false);

 49 setTitle(title);

 50

 51 JLabel titleLabel = new JLabel();

 52 titleLabel.setFont(new Font("MS Sans Serif", 1, 18));

 53 titleLabel.setHorizontalAlignment(SwingConstants.CENTER);

 54 titleLabel.setText(title);

 55 footPanel = new FootPanel();

 56 getContentPane().add(titleLabel, BorderLayout.NORTH);

 57 getContentPane().add(Grid.getInstance(), BorderLayout.CENTER);

 58 getContentPane().add(footPanel, BorderLayout.SOUTH);

 59 pack();

 60 try {

 61 r.executeCommand("(batch main.clp)");

 62 } catch (JessException e) {System.err.println(e);}

 63 }

 64

 65 /**
 66 * This method is used get the instance of the Checker"s object.
 67 * @return the information about the checker.
 68 */
 69

 70 static public Checker getInstance() {

 71 return checker;

 72 }

 73

 74 /**
 75 * This is the Main Method used to start and initilize the game
 76 * It ask for the game options to be played (Human vs Human, Jess vs Jess...
 77 * @param argv not used
 78 */

 79

 80 static public void main(String[] argv) {

 81 {Grid grid;}

 82 Object[] possibleValues = { "Human vs Human", "Human vs Jess", "Jess vs Jess" };

 83 String selectedValue = (String) JOptionPane.showInputDialog(null,

 84 "Choose a mode", "Input",

 85 JOptionPane.INFORMATION_MESSAGE, null,

 86 possibleValues, possibleValues[0]);

 87 if (selectedValue == null)

 88 System.exit(0);

 89

 90 if (selectedValue.equals("Human vs Human")) {

 91 player[0] = new Human ("Human", Piece.WHITE);

 92 player[1] = new Human("Human", Piece.BLACK);

 93 }

 94 else if (selectedValue.equals("Human vs Jess")) {

 95 player[0] = new Human ("Human", Piece.WHITE);

 96 player[1] = new Jess("Jess", Piece.BLACK);

 97 }

 98 else if (selectedValue.equals("Jess vs Jess")) {

 99 player[0] = new Jess ("Jess", Piece.WHITE);

100 player[1] = new Jess("Jess", Piece.BLACK);

101 }

102 else {alert ("Please, choose a mode");}

103 player[0].setNext(player[1]);

104 player[1].setNext(player[0]);

105

106 checker.show();

107

108 checker.init();

109

110 player[0].hasTurn();

111 }

112 /**
113 * This method is to print out the exception if any error should happen in the program.
114 * Prints out the error.
115 * @param exception The exception containing the message to be printed
116 */
117

118 static public void alert(Exception exception) {

119 JOptionPane.showMessageDialog(null, exception.getMessage(), "Error", JOptionPane.ERROR_MESSAGE);

120 exception.printStackTrace();

121 }

122 /**
123 * This method is used to print out the information about the error
124 * Prints out the information about the error.
125 * @param info Informasion to be printed out
126 */
127 static public void alert(String info) {

128 JOptionPane.showMessageDialog(null, info, "Information", JOptionPane.INFORMATION_MESSAGE);

129 }

130

131 /**
132 * This Method is used print out a message in the textbox of graphical user interface.
133 * @param msg message to be append to the textArea
134 */
135

136 public void displayMessage(String msg) {

137 footPanel.resultTextArea.append(msg + "\n");

138 }

139

140 /**
141 * This method get information about the board and initilize a new board with this information
142 */

143

144 public void init() {

145 Board board = Board.getInstance();

146 board.init();

147 }

148

149 /**
150 * This method is invoked when a player win the game.
151 * @param color The color of the winer
152 */
153

154 public void win(boolean color) {

155 if (player[0].color == color)

156 alert(player[0] + " win the game.");

157 else
158 alert(player[1] + " win the game.");

159 isOver = true;

160 }

161 /**
162 * This method is used to find out if the game is over
163 * @return true if the game is over;
164 */

165

166 public boolean isOver() {

167 return isOver;

168 }

169 /**
170 * This method is used to tell who"s turn it is.
171 * @return true if it is white else false if it is black
172 */

173

174 public boolean getTurn(){

175 return turn;

176 }

177

178 /**
179 * This Class is extendsion of JPanel which is used for the graphial part
180 * This class setup the graphical user interface.
181 */
182

183

184 private class FootPanel extends JPanel {

185

186 /** Creates new form footPanel */
187 public FootPanel() {

188 actionLabel = new JLabel();

189 jScrollPane1 = new JScrollPane();

190 resultTextArea = new JTextArea();

191

192 actionLabel.setText("Movement");

193 add(actionLabel);

194

195 resultTextArea.setEditable(false);

196 jScrollPane1.setViewportView(resultTextArea);

197 add(jScrollPane1);

198

199 playBtn = new JButton();

200 playBtn.setText("Play");

201 playBtn.addActionListener(new ActionListener() {

202 public void actionPerformed(ActionEvent evt) {

203 if (turn)

204 player[1].hasTurn();

205 else
206 player[0].hasTurn();

207 }

208 });

209 add(playBtn);

210

211 movBtn = new JButton();

212 movBtn.setText("Move");

213 movBtn.addActionListener(new ActionListener() {

214 public void actionPerformed(ActionEvent evt) {

215 SelectDialog selectDialog = new SelectDialog();

216 selectDialog.show();

217 }

218 });

219 add(movBtn);

220 }

221

222 /**
223 * Causes this container to lay out its components.
224 */
225 public void doLayout() {

226 actionLabel.setBounds(30, 10, 80, 20);

227 jScrollPane1.setBounds(20, 40, 250, 90);

228 playBtn.setBounds(60, 140, 80, 30);

229 movBtn.setBounds(150, 140, 80, 30);

230 }

231

232 /**
233 * @return an instance of Dimension that represents the minimum size of this container.
234 */
235 public Dimension getMinimumSize() {

236 return new Dimension(300,180);

237 }

238

239 /**
240 * @return an instance of Dimension that represents the preferred size of this container.
241 */
242 public Dimension getPreferredSize() {

243 return new Dimension(300,180);

244 }

245

246 private JLabel actionLabel;

247 private JScrollPane jScrollPane1;

248 private JTextArea resultTextArea;

249 private JButton playBtn;

250 private JButton movBtn;

251 }

252 }

	checkers/Grid.java

 1 package checkers;

 2 import javax.swing.*;

 3 import java.awt.*;

 4 import java.awt.event.*;

 5

 6 /**
 7 * The main purpose of this class is to display the board. It is composed by 64 black and white squares. Each of them is identified by two coordinate system: Col and Row or X and Y. The first couple is used all over the game to identify the position of a square; the second are just used in the SMR request.
 8 */
 9 public class Grid extends JPanel {

 10 /**
 11 * size of the board
 12 */

 13 final static public int ROW_MIN = 0;

 14 /**
 15 * size of the board
 16 */

 17 final static public int COL_MIN = 0;

 18 /**
 19 * size of the board
 20 */

 21 final static public int ROW_MAX = 8;

 22 /**
 23 * size of the board
 24 */

 25 final static public int COL_MAX = 8;

 26 static private Square[][] square = new Square[ROW_MAX][COL_MAX];

 27 static private Grid grid = new Grid();

 28 static private Square outside = grid.new Square();

 29

 30 /**
 31 *This Method initilize the grid and places the gound square on the board.
 32 *
 33 */
 34

 35 private Grid() {

 36 boolean rowFirstColor = Square.WHITE;

 37 for (int x=ROW_MIN;x<ROW_MAX ;x++) {

 38 rowFirstColor = !rowFirstColor;

 39 boolean SQcolor = rowFirstColor;

 40 for (int y=COL_MIN;y<COL_MAX ;y++) {

 41 SQcolor = !SQcolor;

 42 square[x][y] = new Square(x, y, SQcolor);

 43 add(square[x][y]);

 44 }

 45 }

 46 }

 47

 48 /**
 49 * Panel size
 50 * @return an instance of Dimension that represents the minimum size of this container.
 51 */
 52 public Dimension getMinimumSize() {

 53 return new Dimension((ROW_MAX +1) * Square.edge,(COL_MAX +1)* Square.edge);

 54 }

 55

 56 /**
 57 * Panel size
 58 * @return an instance of Dimension that represents the preferred size of this container.
 59 */
 60 public Dimension getPreferredSize() {

 61 return new Dimension((ROW_MAX +1) * Square.edge,(COL_MAX +1)* Square.edge);

 62 }

 63 /**
 64 * This method is used to check if a piece is locatet at the upperside side of board
 65 * @return True if the piece is loacated at the upperside side of the board false otherwise.
 66 * @param square Position to be tested
 67 * @param color Color of the piece
 68 */
 69 static public boolean backLine(Square square,boolean color){

 70 boolean retValue = false;

 71 retValue = (square.getRow() == ROW_MIN && color == Piece.WHITE);

 72 retValue |= (square.getRow() == (ROW_MAX-1) && color == Piece.BLACK);

 73 return retValue;

 74 }

 75 /**
 76 * This method is used to check if information about a square and what it contains
 77 * @return the square with information if it is located inside the board.
 78 * @param col coordinate of the square
 79 * @param row coordinate of the square
 80 */
 81

 82 static public Square getSquare(int row, int col) {

 83 if (row >= ROW_MIN && row < ROW_MAX

 84 && col >= COL_MIN && col < COL_MAX)

 85 return square[row][col];

 86 else return outside;

 87 }

 88

 89 /**
 90 * This method is used to printout the information of the square in a string
 91 * @return a string with square information converted to a text string.
 92 */
 93

 94 public String toString() {

 95 String retValue = "The Grid \r\n";

 96 for(int x=ROW_MIN;x<ROW_MAX;x++) {

 97

 98 for(int y=COL_MIN;y<COL_MAX;y++){

 99 retValue += square[x][y];

100 }

101 retValue += "\r\n";

102 }

103 return retValue;

104 }

105

106 /**
107 * This method is used get Grid"s object.
108 * @return the information about the grid.
109 */
110

111 static public Grid getInstance() {

112 return grid;

113 }

114

115 /**
116 * This Class is used to initilize the squares and is a extendstion of Canvas. It contains all the information of the squares.
117 */
118

119

120 public class Square extends Canvas {

121 final static boolean WHITE = true;

122 final static boolean BLACK = false;

123 final static int edge = 30;

124 private boolean isFree = true;

125 private Piece piece;

126 private int col;

127 private int row;

128 private int x;

129 private int y;

130 private boolean SQcolor = WHITE;

131 private boolean outside = false;

132

133 final Font f = new Font("SansSerif",Font.BOLD,12);

134

135 /**
136 * Construtor of the Square the set all square outside the board.
137 */

138 public Square(){

139 outside = true;

140 }

141

142 /**
143 *This Method initilize all the square with the information they need.
144 *
145 */
146

147 private Square(final int row, final int col, boolean SQcolor){

148 this.row = row;

149 this.col = col;

150 this.SQcolor = SQcolor;

151 this.x = (row-7 + col);

152 this.y = (col-row);

153 setSize(edge,edge);

154 setBackground(SQcolor ? Color.white : Color.black);

155

156 addMouseListener(new MouseAdapter() {

157 public void mousePressed(MouseEvent e) {

158 if ((e.getModifiers()) > 0)

159 System.out.println("Square " + row + " "+ col);

160 }

161 });

162 }

163

164 /**
165 * Causes this container to lay out its components.
166 */
167 public void doLayout() {

168 setBounds(row * edge , col * edge, (row + 1) * edge, (col + 1) * edge);

169 }

170

171 /**
172 * This Method is to tell the color of the square black or white
173 * @return the color of the square
174 */
175

176 public boolean isBlack() {

177 return SQcolor;

178 }

179

180 /**
181 * This method is used to find out if a square is within the board and if it is black.
182 * @return true if the conditions are meet else false.
183 */

184 public boolean isLegal(){

185 if ((Math.abs(getX())+Math.abs(getY()) <= 7) && SQcolor == BLACK && !outside)

186 return true;

187 else return false;

188 }

189

190 /**
191 * This Method finds out if there is a piece on the square
192 * @return true if there is no piece on the square else false if it is also outside the board.
193 */
194

195 public boolean isFree(){

196 return (isFree && !outside);

197 }

198

199 /**
200 * This Method is used to set a square free of a piece or set a piece on it and it repaint the interface.
201 * @param isFree Value to be altered
202 */
203

204

205 public void setFree(boolean isFree) {

206 this.isFree = isFree;

207 piece = Board.select(row, col);

208 repaint();

209 }

210 /**
211 * This method turns the coordinate of the square into a sting.
212 * @return the string containing the coordinats of the square.
213 */
214

215 public String toString() {

216 return "Square ("+row+", "+col+") ";

217 }

218 /**
219 * This method is used find out if the squares are equal
220 * @return true if they are else false.
221 * @param anObject object to be compared to
222 */
223 public boolean equals(Object anObject) {

224 if (anObject != null && anObject instanceof Square) {

225 Square square = (Square) anObject;

226 return (square.getCol() == col && square.getRow() == row);

227 }

228 else
229 return false;

230 }

231 /**
232 * This method finds out if the piece on the square has the same colour of the parameter
233 * @return true if they are the same colour else false.
234 * @param color color to be tested
235 */
236 public boolean PieceHasNotTheColor(boolean color) {

237 if (piece == null)

238 return false;

239 if (color != piece.getColor())

240 return true;

241 return false;

242 }

243

244 /**
245 * This method is used find out the information about the piece on the piece on the square.
246 * @return the information of the piece.
247 */
248

249

250 public Piece getPiece() {

251 return piece;

252 }

253

254 /**
255 * This method is used to get the coloum of the square.
256 * @return the coloum.
257 */
258

259 public int getCol() {

260 return col;

261 }

262

263 /**
264 * This method is used to get the row of the square.
265 * @return the row.
266 */
267

268 public int getRow() {

269 return row;

270 }

271

272 /**
273 * This method is used to get the x- coordinat of the square (the SMR coordinatsystem.
274 * @return the x-coordinat.
275 */
276

277 public int getX() {

278 return x;

279 }

280

281

282 /**
283 * This method is used to get the y- coordinat of the square (the SMR coordinatsystem.)
284 * @return the y-coordinat.
285 */

286 public int getY() {

287 return y;

288 }

289

290 /**
291 * This method is used to get the colour of the square
292 * @return true if it white and false if it is black
293 */
294

295 public boolean getColor() {

296 return SQcolor;

297 }

298

299 /**
300 * This method is used TO paint the graphical user interface by drawing it.
301 * @param g Graphic object
302 */
303

304 public void paint(Graphics g) {

305 g.clearRect(0,0,edge,edge);

306

307 if (!isFree) {

308 if (piece == null)

309 return;

310

311 g.setColor(piece.getColor() ? Color.white : Color.red);

312

313 g.fillOval(3,3,edge-7,edge-7);

314

315 if (piece.isKing()) {

316 g.setColor(Color.YELLOW);

317 g.fillOval(8,8,edge-15,edge-15);

318 }

319

320 g.setColor(Color.black);

321 g.setFont(f);

322 FontMetrics fm = getFontMetrics(f);

323 int number = piece.getNumber();

324 int w = fm.charWidth(number);

325 int h = fm.getHeight();

326 g.drawString(""+number,((edge-w)/2),((edge+h)/2));

327

328 }

329 }

330 }

331 }

332

	checkers/Human.java

 1 /*
 2 * Human.java
 3 *
 4 * Created on 26. november 2004, 10:11
 5 */
 6

 7 package checkers;

 8 import jess.*;

 9 import java.util.LinkedList;

 10 import java.util.ListIterator;

 11 import java.util.StringTokenizer;

 12 import java.io.InputStreamReader;

 13 import java.io.BufferedReader;

 14 import java.io.FileInputStream;

 15 import java.io.FileNotFoundException;

 16 import java.io.IOException;

 17 /**
 18 * Human player
 19 * @author k380h11
 20 */
 21

 22

 23 public class Human extends Player{

 24

 25 /**
 26 * Creates a new instance of Human
 27 * @param id name of the player
 28 * @param color color of the player
 29 */
 30 public Human(String id, boolean color) {

 31 super(id, color);

 32 }

 33

 34

 35 /**
 36 * This method is used for the human player to enter the commands
 37 * of what one whats to do
 38 */
 39

 40 public void play() {

 41 BufferedReader in = new BufferedReader(new InputStreamReader(System.in));

 42 boolean continu = true;

 43 do {

 44 continu = true;

 45 try {

 46 StringTokenizer st = null;

 47 do {

 48 try {

 49 System.out.print("CMD " + (Checker.getInstance().getTurn() ? "white" : "red") + " >");

 50 st = new StringTokenizer(in.readLine());

 51 } catch (IOException e){ System.err.println(e);}

 52 } while (st.countTokens() < 1);

 53

 54 int AgumentNumber= st.countTokens()-1;

 55 String line[] = new String[AgumentNumber];

 56 String Command = st.nextToken().toLowerCase();

 57

 58 for (int i = 0;st.hasMoreTokens(); i++)

 59 line[i] = st.nextToken();

 60

 61 if (Command.equals("print")){

 62 if (line[0].equals("board"))

 63 System.out.println(Board.getInstance());

 64 else if (line[0].equals("grid"))

 65 System.out.println(Grid.getInstance());

 66 else if (line[0].equals("piece")) {

 67 Piece p = Board.select((short) Integer.parseInt(line[1]), Boolean.getBoolean(line[2]));

 68 System.out.println(p);

 69 } else System.out.println("syntax is: print <object> " +

 70 "where <object> is board or grid or piece");

 71 }

 72 else if (Command.equals("move")) {

 73 Piece p = selectPiece(in, color) ;

 74 System.out.println("\n posible movement:");

 75 if (p != null) {

 76 Grid.Square sq[] =new Grid.Square[4];

 77 sq[0] = p.getNLS();

 78 sq[1] = p.getNRS();

 79 sq[2] = p.getPLS();

 80 sq[3] = p.getPRS();

 81

 82 if (sq[0].isFree() && sq[0].isLegal()){

 83 System.out.println(sq[0]);

 84 } else sq[0] = null;

 85

 86 if (sq[1].isFree() && sq[1].isLegal()) {

 87 System.out.println(sq[1]);

 88 } else sq[1] = null;

 89

 90 if (sq[2].isFree() && sq[2].isLegal() && p.isKing()) {

 91 System.out.println(sq);

 92 } else sq[2] = null;

 93

 94 if (sq[3].isFree() && sq[3].isLegal()&& p.isKing()) {

 95 System.out.println(sq);

 96 } else sq[3] = null;

 97

 98 if (sq[0] == null && sq[1] == null && sq[2] == null && sq[3] == null)

 99 System.out.println("actualy, this piece can not be moved");

100 else {

101 Grid.Square s = selectSquare(in);

102 if (s!= null) {

103 if (s.equals(sq[0]) || s.equals(sq[1]) || s.equals(sq[2]) || s.equals(sq[3])) {

104 p.move(s);

105 continu = false;

106 } else {System.out.println("This square is not allowed");}

107 } else {

108 System.out.println("error on the command");

109 }

110 }

111 }

112 }

113 else if (Command.equals("jump")) {

114 Piece p = selectPiece(in, color) ;

115

116 Grid.Square sqJ[] =new Grid.Square[4];

117 Grid.Square sq[] =new Grid.Square[4];

118 sqJ[0] = p.getNLS();

119 sqJ[1] = p.getNRS();

120 sqJ[2] = p.getPLS();

121 sqJ[3] = p.getPRS();

122

123 sq[0] = p.getNNLS();

124 sq[1] = p.getNNRS();

125 sq[2] = p.getPPLS();

126 sq[3] = p.getPPRS();

127

128 System.out.println("\n posible jump:");

129

130 if (sq[0].isFree() && sq[0].isLegal() && !sqJ[0].isFree()

131 && sqJ[0].PieceHasNotTheColor(p.getColor())

132) {System.out.println(sq[0].getPiece());}

133 else sqJ[0] = null;

134

135 if (sq[1].isFree() && sq[1].isLegal() && !sqJ[1].isFree()

136 && sqJ[1].PieceHasNotTheColor(p.getColor())

137) {System.out.println(sq[1].getPiece());}

138 else sqJ[1] = null;

139

140 if (sq[2].isFree() && sq[2].isLegal() && !sqJ[2].isFree()

141 && sqJ[2].PieceHasNotTheColor(p.getColor())

142 && p.isKing()

143) {System.out.println(sq[2].getPiece());}

144 else sqJ[2] = null;

145

146 if (sq[3].isFree() && sq[3].isLegal() && !sqJ[3].isFree()

147 && sqJ[3].PieceHasNotTheColor(p.getColor())

148 && p.isKing()

149) {System.out.println(sq[3].getPiece());}

150 else sqJ[3] = null;

151

152 if (sqJ[0] == null && sqJ[1] == null && sqJ[2] == null && sqJ[3] == null)

153 System.out.println("actualy, this piece can not jump any other");

154 else {

155 Piece pToRemove = selectPiece(in, !color) ;

156

157 if (p != null && pToRemove != null) {

158 Grid.Square s = pToRemove.getSquare();

159 if (s.equals(sqJ[0]) || s.equals(sqJ[1]) || s.equals(sqJ[2]) || s.equals(sqJ[3])) {

160 p.jump(s);

161 continu = false;

162 } else {System.out.println("This piece is not allowed");}

163 } else {

164 System.out.println("error on the command");

165 }

166 }

167 }

168 else if (Command.equals("connect")) {

169 Checker.r.executeCommand("(load-package jessmr.pkg)");

170 int SMRNumber = 0;

171 Checker.r.executeCommand("(SMRConnect smr"+ SMRNumber +")");

172 Checker.r.executeCommand("(batch x)");

173 Checker.r.executeCommand("(go 2)");

174 }

175 else if (Command.equals("SMR-move")) {

176 Grid.Square sInit = selectSquare(in);

177 int initPosX = sInit.getX();

178 int initPosY = sInit.getY();

179

180 Grid.Square sFinal = selectSquare(in);

181 int finalPosX = sFinal.getX();

182 int finalPosY = sFinal.getY();

183

184 Checker.r.executeCommand("(assert(Move(init-pos-x " + initPosX +")(init-pos-y " +initPosY + ")(final-pos-x " + finalPosX +")(final-pos-x " + finalPosY + ")))");

185 continu = false;

186 }

187 else if (Command.equals("SMR-jump")) {

188

189 }

190 else if (Command.equals("jess")) {

191 String cmd;

192 while (!(cmd = in.readLine()).equals("quit")) {

193 Checker.r.executeCommand(cmd);

194 }

195 }

196 else if (Command.equals("exit")) {

197 String cmd;

198 while (!(cmd = in.readLine()).equals("quit")) {

199 Checker.r.executeCommand(cmd);

200 }

201 }

202 else {

203 System.out.println("Unknown command");

204 }

205

206 } catch (JessException e) {

207 System.err.println(e);

208 } catch (IOException e) {

209 System.err.println(e);

210 }

211 } while (continu);

212 next.hasTurn();

213 }

214

215 /**
216 * This method provides a friendly way to ask the user to enter information about a specified square.
217 * @param in The input stream where the message will be displayed
218 * @throws IOException If the input stream can not be read
219 * @return The selected square
220 */

221 static public Grid.Square selectSquare(BufferedReader in) throws IOException {

222 System.out.println("Select a square :");

223

224 int row = 0;

225 int col = 0;

226 try {

227 System.out.print(" row :");

228 row = Integer.parseInt(in.readLine());

229 System.out.print(" col :");

230 col = Integer.parseInt(in.readLine());

231 } catch (NumberFormatException e) {System.out.println("row and col have to be a number");}

232

233 return Grid.getSquare(row , col);

234 }

235 /**
236 * This method provides a friendly way to ask the user to enter information about a specified pieces nr.
237 * @return The selected piece"s nr. and color
238 * @param color color of the piece selected
239 * @param in The input stream where the message will be displayed
240 * @throws IOException If the input stream can not be read
241 */

242

243 static public Piece selectPiece(BufferedReader in, boolean color) throws IOException {

244 System.out.println("Select a piece :");

245 System.out.print(" number :");

246 Piece p = null;

247 try {

248 int num = Integer.parseInt(in.readLine());

249 p = Board.select(num, color);

250 } catch (NumberFormatException e) {System.out.println("the piece has to be a number");}

251 System.out.println(p);

252 return p;

253 }

254 }

255

256

	checkers/Jess.java

 1 /*
 2 * Jess.java
 3 *
 4 * Created on 26. november 2004, 10:10
 5 */
 6

 7 package checkers;

 8 import jess.*;

 9

10 /**
11 * Jess player
12 * @author k380h11
13 */
14 public class Jess extends Player {

15

16 /**
17 * Creates a new instance of Jess
18 * @param id name of the player
19 * @param color color of the player
20 */
21 public Jess(String id, boolean color) {

22 super(id, color);

23 }

24 /**
25 * This method is used start the Jess program
26 */
27

28 public void play() {

29 try {

30 Checker.r.reset();

31 for (int i=0 ; i< 3; i++) {

32 String turn = Boolean.toString(Checker.getInstance().getTurn()).toUpperCase ();

33 Checker.r.executeCommand("(assert (deepness "+ i +" "+ turn +"))");

34 Checker.r.executeCommand("(focus MOVEMENT)");

35 Checker.r.executeCommand("(run)");

36 turn = Boolean.toString(!Checker.getInstance().getTurn()).toUpperCase ();

37 Checker.r.executeCommand("(assert (deepness "+ i +" "+ turn +"))");

38 Checker.r.executeCommand("(focus MOVEMENT)");

39 Checker.r.executeCommand("(run)");

40 }

41

42 Checker.r.executeCommand("(focus REASONING)");

43 Checker.r.executeCommand("(assert (find_max -1000))");

44 Checker.r.executeCommand("(run)");

45 sleep(500);

46 } catch (Exception e) {

47 System.err.println(e);

48 }

49 }

50 }

51

	main.clp

 1 ;;;==

 2 ;;; Checkers Program

 3 ;;; 20 / 12 / 2004

 4 ;;;

 5 ;;; This program was design for the second

 6 ;;; mandatory assignment.

 7 ;;;

 8 ;;;

 9 ;;; authors :

 10 ;;; Niels Petersen (s021960)

 11 ;;; Mathieu Texier (s041692)

 12 ;;;

 13 ;;;==

 14

 15 (clear) ; To remove any exiting fact that could interfere with the program

 16 (import checkers.*) ; This Jess able to call any function in the java code

 17 (defclass Piece checkers.Piece) ; Copying the pieces from java

 18

 19 (defglobal ?*grid* = (call checkers.Grid getInstance)) ; global variabels contain Instance

 20 (defglobal ?*game* = (call checkers.Checker getInstance)); of grid and Checker

 21 (defglobal ?*MovePt* = 1) ; the points used for the movements

 22 (defglobal ?*KingPt* = 3)

 23 (defglobal ?*EatPt* = 8)

 24

 25 ;---

 26 ; The movement module

 27 ; this module contains the rules, which checks for the

 28 ; possible movement the pieces can preform in this and

 29 ; future turns

 30 ;---

 31 (defmodule MOVEMENT)

 32

 33 (deftemplate MOVEMENT::movement

 34 (slot piece)

 35 (slot action)

 36 (slot next)

 37 (slot nextNext)

 38 (slot point

 39 (type INTEGER)

 40 (default 0))

 41 (slot numberOfAction

 42 (default 1))

 43 (slot level

 44 (type INTEGER)

 45)

 46 (slot pieceEaten)

 47 (slot multiShot)

 48)

 49

 50 ;--

 51 ; The Rule "can_move", which checks if it

 52 ; is possible to move a piece.

 53 ;--

 54

 55 (defrule MOVEMENT::Can_move

 56 (MAIN::deepness ?level ?turn)

 57 (or

 58 ?PieceAdd <- (MAIN::Piece (NRS ?next) (OBJECT ?piece) (color ?turn) (number ?number) (level ?level))

 59 ?PieceAdd <- (MAIN::Piece (NLS ?next) (OBJECT ?piece) (color ?turn) (number ?number) (level ?level))

 60 ?PieceAdd <- (MAIN::Piece (PRS ?next) (OBJECT ?piece) (color ?turn) (number ?number) (level ?level) (king TRUE))

 61 ?PieceAdd <- (MAIN::Piece (PLS ?next) (OBJECT ?piece) (color ?turn) (number ?number) (level ?level) (king TRUE))

 62)

 63 (not (MAIN::Piece (square ?next) (level ?l&:(<= ?l ?level))))

 64 (test (call ?next isLegal))

 65 =>

 66 (if (eq (call ?*game* getTurn) ?turn)

 67 then

 68 (bind ?factor 1)

 69 else

 70 (bind ?factor -1)

 71)

 72

 73 (if (and (call ?*grid* backLine ?next ?turn) (not (call ?piece isKing)))

 74 then

 75 (bind ?pts (*(+ ?*MovePt* ?*KingPt*) ?factor))

 76 else

 77 (bind ?pts (* ?*MovePt* ?factor))

 78)

 79

 80 (bind ?NewPieceAdd (definstance Piece (new checkers.Piece ?number ?turn ?next (+ ?level 1)) dynamic))

 81 (bind ?MovementAdd (assert (movement (piece ?piece) (action "move") (next ?next) (point ?pts) (level ?level))))

 82

 83 (if (neq ?MovementAdd FALSE)

 84 then

 85 (assert (relate ?NewPieceAdd to ?PieceAdd by ?MovementAdd))

 86 else

 87 (retract ?NewPieceAdd)

 88)

 89)

 90

 91 ;--

 92 ; The Rule "can_eat", which checks if it

 93 ; is possible to eat a other piece and

 94 ; thereby jumping two space forward.

 95 ;--

 96

 97 (defrule MOVEMENT::Can_eat

 98 (MAIN::deepness ?level ?turn)

 99 (or

100 ?PieceAdd <- (MAIN::Piece (NLS ?next) (NNLS ?next_next) (OBJECT ?piece) (number ?number) (color ?turn) (level ?level))

101 ?PieceAdd <- (MAIN::Piece (NRS ?next) (NNRS ?next_next) (OBJECT ?piece) (number ?number) (color ?turn) (level ?level))

102 ?PieceAdd <- (MAIN::Piece (PLS ?next) (PPLS ?next_next) (OBJECT ?piece) (number ?number) (color ?turn) (level ?level) (king TRUE))

103 ?PieceAdd <- (MAIN::Piece (PRS ?next) (PPRS ?next_next) (OBJECT ?piece) (number ?number) (color ?turn) (level ?level) (king TRUE))

104)

105 (MAIN::Piece (square ?next) (OBJECT ?pieceEaten) (number ?numberOp) (color ~?turn));(level ?l&:(<= ?l ?level))

106 (or

107 (not (MAIN::Piece (square ?next_next) (number ~?numberOp) (level ?l2&:(> ?l2 ?level))));

108 (MAIN::Piece (square ?next_next) (number ?numberOp) (color ~?turn)) ;(level ?l3&:(eq ?l3 (- ?l 1)))

109)

110 (not (MAIN::Piece (square ?next_next) (number ?number) (color ?turn)))

111

112 (test (call ?next_next isLegal))

113 (test (call ?next isLegal))

114 =>

115 (if (eq (call ?*game* getTurn) ?turn)

116 then

117 (bind ?factor 1)

118 else

119 (bind ?factor -1)

120)

121

122 (if (and (call ?*grid* backLine ?next_next ?turn) (not (call ?piece isKing)))

123 then

124 (bind ?pts (+ ?*EatPt* ?*KingPt*)) ;(abs (call ?pieceEaten getSlotValue point))

125

126 else

127 (bind ?pts ?*EatPt*) ;(abs (call ?pieceEaten getSlotValue point))

128)

129

130 (if (call ?pieceEaten isKing)

131 then

132 (bind ?pts (+ ?pts ?*KingPt*))

133)

134

135 (bind ?pts (* ?pts ?factor))

136

137 (bind ?PieceToAdd (new Piece ?number ?turn ?next_next (+ ?level 1)))

138 (bind ?NewPieceAdd (definstance Piece ?PieceToAdd dynamic))

139 (bind ?MovementAdd (assert (movement (piece ?piece) (action "eat") (next ?next) (nextNext ?next_next)(pieceEaten ?pieceEaten) (point ?pts) (level ?level))))

140 (if (neq ?MovementAdd FALSE)

141 then

142 (assert (relate ?NewPieceAdd to ?PieceAdd by ?MovementAdd))

143)

144)

145

146 ;--

147 ; The Rule "multi-shot", which checks if it

148 ; is possible to eat multiple time in a row

149 ; thereby jumping severule spaces forwarder.

150 ;--

151

152 (defrule MOVEMENT::multi_shot

153 ?FirstShot <- (movement (piece ?piece) (action "eat") (nextNext ?next_next) (pieceEaten ?pieceEaten) (level ?level))

154 ?SecondShot <- (movement (piece ?piece2) (action "eat") (nextNext ?next_next2) (pieceEaten ?pieceEaten2) (level ?l&:(eq ?l(+ ?level 1))))

155 (test (neq ?FirstShot ?SecondShot))

156 (test (neq ?piece ?piece2))

157 (test (call ?next_next isFree))

158 (test (call ?next_next2 isFree))

159 ?relate1 <-(relate ?PieceAdd to ?old by ?FirstShot)

160 ?relate2 <- (relate ?new to ?PieceAdd by ?SecondShot)

161

162 (test (eq (call ?piece getColor) (call ?piece2 getColor)))

163 (test (eq (call ?piece getNumber) (call ?piece2 getNumber)))

164 =>

165 (bind ?level (call ?piece getLevel))

166 (if (eq (call ?piece2 getLevel) (+ ?level 1))

167 then

168 (bind ?pts (abs (call ?FirstShot getSlotValue point)))

169 (bind ?ptsToAdd (call ?SecondShot getSlotValue point))

170 (modify ?FirstShot (point (+ ?pts ?*EatPt* ?*EatPt* ?*EatPt* ?ptsToAdd)) (multiShot ?SecondShot))

171 (modify ?SecondShot (piece ?piece))

172)

173)

174

175 ;--

176 ; The Rule "priority", which checks if it

177 ; there is a "move" and a "jump" for the

178 ; same piece, and removes the "move" if this

179 ; condition is true.

180 ;--

181

182 (defrule MOVEMENT::priority (declare (salience -10))

183 ?addOne <- (relate ?PieceOneAdd to ?PieceAdd by ?MovementOneAdd)

184 ?addTwo <- (relate ?PieceTwoAdd to ?PieceAdd by ?MovementTwoAdd)

185 (test (neq ?MovementOneAdd ?MovementTwoAdd))

186 =>

187 (bind ?actionOne (call ?MovementTwoAdd getSlotValue action))

188 (bind ?actionTwo (call ?MovementOneAdd getSlotValue action))

189 (if (and (eq ?actionOne eat) (eq ?actionTwo move))

190 then

191 (retract ?MovementTwoAdd)

192 (retract ?PieceTwoAdd)

193 (retract ?AddTwo)

194)

195)

196 ;--

197 ; The Rule "eaten", which checks if it

198 ; is possible to be eaten by other piece

199 ; if the piece moves, and if this condition

200 ; is true, prevents this movement.

201 ;--

202

203

204 (defrule MOVEMENT::eaten (declare (salience -20))

205 ?OponentMoveAdd <- (movement (piece ?oponent) (action "eat") (pieceEaten ?pieceEaten))

206 ?PieceAdd <- (MAIN::Piece (OBJECT ?pieceEaten) (color ?turn))

207 (test (eq (call ?*game* getTurn) ?turn))

208 (relate ?PieceAdd to ?OldPieceAdd by ?MoveAdd)

209 (test (neq ?OponentMoveAdd ?MoveAdd))

210 =>

211 (if (eq (call ?MoveAdd getSlotValue multiShot) nil)

212 then

213 (bind ?pts (call ?MoveAdd getSlotValue point))

214 (bind ?ptsToAdd (call ?OponentMoveAdd getSlotValue point))

215 (modify ?MoveAdd (point (+ ?pts ?ptsToAdd)))

216)

217)

218

219 ;--

220 ; The Rule "update", which uses the

221 ; relationships to update the point of

222 ; the piece, which can perform these

223 ; movements in the future.

224 ;--

225

226 (defrule MOVEMENT::update (declare (salience -30))

227 (relate ?NewPieceAdd to ?PieceAdd by ?NewMovementAdd)

228 (relate ?PieceAdd to ?OldPieceAdd by ?OldMovementAdd)

229 =>

230 (bind ?ptsToAdd (call ?NewMovementAdd getSlotValue point))

231 (bind ?pts (call ?OldMovementAdd getSlotValue point))

232 (bind ?number (call ?OldMovementAdd getSlotValue numberOfAction))

233 (bind ?level (call ?NewMovementAdd getSlotValue level))

234 (modify ?OldMovementAdd (point (+ ?pts (/ ?ptsToAdd ?level))) (numberOfAction (+ ?number (/ 1 (+ ?level 1)))))

235)

236

237 ;--

238 ; The Reasoning module

239 ; this module contains the rules, which does the actual

240 ; movement of the pieces, by checking points of every piece

241 ; and call either the "move" or "jump" function in java

242 ;--

243

244 (defmodule REASONING)

245

246 ;--

247 ; The Rule "max", which checks all the

248 ; pieces"s points to find which piece

249 ; has the greatest point.

250 ;--

251

252 (defrule REASONING::max

253 ?old <- (find_max ?curent $?old_piece)

254 ?p <- (MOVEMENT::movement (point ?Point) (nextNext ?next_next) (numberOfAction ?number) (action ?action)(level 0) (piece ?piece) (pieceEaten ?pieceEaten))

255 (test (eq (call ?piece getColor) (call ?*game* getTurn)))

256 (MAIN::deepness ?level ?turn)

257 =>

258 (bind ?continue TRUE)

259 (if (eq ?action "eat")

260 then

261

262 (if (or (neq (call ?pieceEaten getLevel) 0) (not (call ?next_next isFree)))

263 then

264 (bind ?continue FALSE)

265)

266)

267

268 (if (eq ?continue TRUE)

269 then

270 (bind ?max (/ ?Point ?number))

271

272 (if (> ?max ?curent)

273 then

274 (assert (find_max ?max ?p))

275 (retract ?old)

276)

277)

278)

279

280 ;--

281 ; The Rule "Control", which handles the

282 ; the moving of the piece, by checking

283 ; which movement it is, and calling the

284 ; approriate Java function.

285 ;--

286

287 (defrule REASONING::Control (declare (salience -10))

288 ?find <- (find_max ?pts ?p)

289 ?p <- (MOVEMENT::movement (piece ?piece) (action ?action) (next ?next) (point ?Point) (multiShot $?multiShot))

290 =>

291 (if (eq ?action "eat")

292 then

293 (printout t (call ?piece toString) " -> jump " (call ?next toString) crlf)

294 (call ?piece jump ?next)

295 (assert (remove ?next))

296 (if (neq ?multiShot nil)

297 then

298 (bind ?pieceEaten (call ?multiShot getSlotValue pieceEaten))

299 (bind ?next_next (call ?multiShot getSlotValue nextNext))

300 (if (and (eq (call ?pieceEaten getLevel) 0) (call ?next_next isFree))

301 then

302 (printout t "multiPas "crlf)

303 (retract ?find)

304 (assert (find_max ?pts ?multiShot))

305)

306)

307

308)

309 (if (eq ?action "move")

310 then

311 (printout t (call ?piece toString) " -> move " (call ?next toString) crlf)

312 (call ?piece move ?next)

313)

314)

315

316 ;--

317 ; The Rule "Remove" and "cleanup", which handles the

318 ; removing of used facts.

319 ;--

320

321 (defrule REASONING::Remove (declare (salience -20))

322 ?add <- (remove ?pieceOnSquare)

323 ?piece_to_retract <- (MAIN::Piece (OBJECT ?piece) (square ?pieceOnSquare))

324 =>

325 (retract ?piece_to_retract)

326 (retract ?add)

327 (assert (remove ?pieceOnSquare))

328)

329

330 (defrule REASONING::Cleanup (declare (salience -30))

331 (or

332 ?add <- (remove ?)

333 ?add <- (MAIN::Piece (level ?level&:(> ?level 0)))

334)

335 =>

336 (retract ?add)

337)

	checkers/Piece.java

 1 package checkers;

 2 import jess.*;

 3 import java.beans.PropertyChangeListener;

 4 import java.beans.PropertyChangeSupport;

 5 import java.io.Serializable;

 6 /**
 7 * This object represents a piece on a board and is used in both java and jess. The piece is defined by its position (on a Square), its colour, its number and its status (king or men). Each piece also knows their eight neighbour squares: the potential positions into which one the piece can move.
 8 * @author k380h11
 9 */
 10 public class Piece extends Object implements Serializable{

 11 final static boolean WHITE = true;

 12 final static boolean BLACK = false;

 13

 14 /**
 15 * This Method is used to set the number and color of a piece
 16 * And it makes a call to the Board to also set it.
 17 * @param number Piece"number
 18 * @param color Piece"s color
 19 */
 20 public Piece(int number, boolean color) {

 21 this.color = color;

 22 this.number = number;

 23 Board.getInstance().add(this);

 24 }

 25 /**
 26 * This Method is also to set the number and color of a piece but it also
 27 * sets the level and square
 28 * And it makes a call method calculPos.
 29 * @param number Piece"number
 30 * @param color Piece"s color
 31 * @param square square move to
 32 * @param level Piece"s level
 33 */
 34 public Piece(int number, boolean color, Grid.Square square, int level) {

 35 this.color = color;

 36 this.number = number;

 37 this.level = level;

 38 this.square = square;

 39 this.virtual = true;

 40 calculPos();

 41 }

 42

 43 /**
 44 * This Method initilizes the pieces where they are placed and of what color they are
 45 *
 46 */
 47 public void init() {

 48 int row = (int) Math.ceil((number)/4);

 49 int col = (((row+1)%2)+(number%4)*2);

 50 if (color == Piece.WHITE) {

 51 row = Grid.ROW_MAX-row-1;

 52 col = Grid.COL_MAX-col-1;

 53 }

 54 move(Grid.getSquare(row, col));

 55 }

 56

 57 /**
 58 * jump the piece over a square
 59 * @param squareToJump square to be jumped
 60 */
 61

 62 public void jump(Grid.Square squareToJump) {

 63 Piece pieceToJump = Board.select(squareToJump.getRow(),squareToJump.getCol());

 64 Board.getInstance().remove(pieceToJump);

 65 squareToJump.setFree(true);

 66

 67 int newRow =squareToJump.getRow() + squareToJump.getRow() - square.getRow();

 68 int newCol =squareToJump.getCol()+ squareToJump.getCol() - square.getCol() ;

 69 Grid.Square moveto = Grid.getSquare(newRow, newCol);

 70 move(moveto);

 71 Grid.getInstance().repaint();

 72 }

 73 /**
 74 * This Method is used to move a piece from one square to another.
 75 * @param square square to meve the piece to
 76 */
 77

 78 public void move(Grid.Square square) {

 79 if (!virtual)

 80 this.square.setFree(true);

 81 this.square = square;

 82 if (!virtual)

 83 this.square.setFree(false);

 84

 85 calculPos();

 86 }

 87 /**
 88 * This Method is used to convert the piece information to a string
 89 * @return a string containing the information of the piece.
 90 */
 91

 92 public String toString() {

 93 String retString = (king ? "King" : "men")+

 94 " " + (color ? "white":"red") +" "+ number + " on "+ square;

 95 return retString ;

 96 }

 97 /**
 98 * This Method finds out if two piece are equal same colour, number, square, level
 99 * @return True if they are else false
100 * @param anObject object to be compared
101 */
102

103 public boolean equals(Object anObject) {

104 if (anObject != null && anObject instanceof Piece) {

105 Piece piece = (Piece) anObject;

106 return ((piece.getNumber() == number && piece.getColor() == color)

107 && (piece.square.equals(square)) && (piece.level == level));

108 }

109 else
110 return false;

111 }

112 /**
113 * This Method is used to get the number of a piece
114 * @return the number of a piece
115 */
116

117 public int getNumber() {

118 return number;

119 }

120 /**
121 * This Method is used to set the number of a piece, from an older location
122 * @param number the number of the piece
123 */
124

125 public void setNumber(int number) {

126 this.number = number;

127 }

128 /**
129 * This Method is used to get the square of a piece, from an older location
130 * @return the square.
131 */
132

133 public Grid.Square getSquare() {

134 return square;

135 }

136 /**
137 * This Method is used to get the colour of a piece, form an older location
138 * @return the colour of the piece.
139 */
140

141 public boolean getColor() {

142 return color;

143 }

144 /**
145 * This Method is used to get the next left square of the piece, from an ekstern location
146 * @return the next left squares location
147 */
148

149 public Grid.Square getNLS() {

150 return nls;

151 }

152 /**
153 * This Method is used to get the next right square of the piece, from an ekstern location
154 * @return the next right squares location
155 */
156

157 public Grid.Square getNRS() {

158 return nrs;

159 }

160 /**
161 * This Method is used to get the next-next left square of the piece, from an ekstern location
162 * @return the next-next left squares location
163 */
164

165 public Grid.Square getNNLS() {

166 return nnls;

167 }

168 /**
169 * This Method is used to get the next-next right square of the piece, from an ekstern location
170 * @return the next-next right squares location
171 */
172

173 public Grid.Square getNNRS() {

174 return nnrs;

175 }

176 /**
177 * This Method is used to get the previous left square of the piece, from an ekstern location
178 * @return the previous left squares location
179 */
180

181 public Grid.Square getPLS() {

182 return pls;

183 }

184 /**
185 * This Method is used to get the previous right square of the piece, from an ekstern location
186 * @return the previous right squares location
187 */
188

189 public Grid.Square getPRS() {

190 return prs;

191 }

192 /**
193 * This Method is used to get the 2*previous left square of the piece, from an ekstern location
194 * @return the 2*previous left squares location
195 */
196

197 public Grid.Square getPPLS() {

198 return ppls;

199 }

200 /**
201 * This Method is used to get the 2*previous right square of the piece, from an ekstern location
202 * @return the 2*previous right squares location
203 */
204

205 public Grid.Square getPPRS() {

206 return pprs;

207 }

208 /**
209 * This Method is used to get the level of the piece, from an ekstern location
210 * @return the level of the piece
211 */
212

213 public int getLevel() {

214 return level;

215 }

216

217 /**
218 * This Method is used to set the level of the piece, for an ekstern location
219 * Set the level of the piece to level in the parameter
220 * @param level the level of the piece
221 */
222

223 public void setLevel(int level){

224 this.level = level;

225 }

226

227 /**
228 * This Method is used to set the virtual effekt of a piece (but is not used)
229 * @param virtual if virtual
230 */
231

232 public void setVirtual(boolean virtual) {

233 this.virtual = virtual;

234 }

235

236 /**
237 * This Method is used to read if a piece is virtual or not (but is not used)
238 * @return the virtual informantion TRUE or FALSE
239 */
240

241 public boolean isVirtual() {

242 return virtual;

243 }

244

245

246 /**
247 * This Method is used to find out if a piece is a king or just a "man"
248 * @return the true if the piece is a king else false
249 */
250

251 public boolean isKing() {

252 return king;

253 }

254

255 /**
256 * This Method is to add a propertychangelistener
257 * @param pcl the propertychangelistener object
258 */
259

260 public void addPropertyChangeListener(PropertyChangeListener pcl) {

261 pcs.addPropertyChangeListener(pcl);

262 }

263

264 /**
265 * This Method is to remove a Propertychangelistener.
266 * @param pcl the propertychangelistener object
267 */
268

269 public void removePropertyChangeListener(PropertyChangeListener pcl) {

270 pcs.removePropertyChangeListener(pcl);

271 }

272

273 /**
274 * This Method calculate the next legal positions of the piece and
275 * it set the piece to be a king if is on the backline of the board
276 * The pcs.

277 *
278 *
279 */
280

281 private void calculPos() {

282 int mov = (color ? -1 : 1);

283 nls = Grid.getSquare(square.getRow() + mov, square.getCol() + mov);

284 nrs = Grid.getSquare(square.getRow() + mov, square.getCol() - mov);

285 pls = Grid.getSquare(square.getRow() - mov, square.getCol() + mov);

286 prs = Grid.getSquare(square.getRow() - mov, square.getCol() - mov);

287 mov = mov * 2;

288 nnls = Grid.getSquare(square.getRow() + mov, square.getCol() + mov);

289 nnrs = Grid.getSquare(square.getRow() + mov, square.getCol() - mov);

290 ppls = Grid.getSquare(square.getRow() - mov, square.getCol() + mov);

291 pprs = Grid.getSquare(square.getRow() - mov, square.getCol() - mov);

292

293 if (Grid.backLine(square, color))

294 king = true;

295

296 pcs.firePropertyChange("square", square, square);

297 pcs.firePropertyChange("nls", nls, nls);

298 pcs.firePropertyChange("nrs", nrs, nrs);

299 pcs.firePropertyChange("pls", pls, pls);

300 pcs.firePropertyChange("prs", prs, prs);

301 pcs.firePropertyChange("nnls", nnls, nnls);

302 pcs.firePropertyChange("nnrs", nnrs, nnrs);

303 pcs.firePropertyChange("ppls", ppls, ppls);

304 pcs.firePropertyChange("pprs", pprs, pprs);

305 pcs.firePropertyChange("king", king, king);

306 }

307

308 private PropertyChangeSupport pcs = new PropertyChangeSupport(this);

309

310 /**
311 * The default values of the piece"s parameters.
312 */
313 private boolean color;

314 private int actionPoint = 0;

315 private int number = 0;

316 private boolean king = false;

317 private boolean virtual = false;

318 private int level = 0;

319 private Grid.Square square = Grid.getInstance().new Square();

320 private Grid.Square nls = Grid.getInstance().new Square();

321 private Grid.Square nrs = Grid.getInstance().new Square();

322 private Grid.Square nnls = Grid.getInstance().new Square();

323 private Grid.Square nnrs = Grid.getInstance().new Square();

324 private Grid.Square pls = Grid.getInstance().new Square();

325 private Grid.Square prs = Grid.getInstance().new Square();

326 private Grid.Square ppls = Grid.getInstance().new Square();

327 private Grid.Square pprs = Grid.getInstance().new Square();

328 }

329

330

	checkers/Player.java

 1 /*
 2 * Player.java
 3 *
 4 * Created on 26. november 2004, 10:10
 5 */
 6

 7 package checkers;

 8

 9 /**
10 * The design to implement the player was inspired from the <U>Object-Oriented Software Development Using java</U> book in chapter 11.3. Two player objects implements an abstract method play() from the Player class. Both of them extend the Thread Java Foundation Class. Consequently, the player that has not the turn wait() until he is notify() by it opponent. This “passing the baton” technique prevents both threads to access the critical section (the board) at the same time. Mutual exclusion is then ensured. When a player object is constructed, his name and his colour are passed in argument to the constructor.
11 * @author k380h11
12 */
13 abstract public class Player extends Thread{

14

15 Player turn;

16 protected Player next;

17 protected String id;

18 protected boolean color;

19

20 /**
21 * Creates a new instance of Player
22 * @param id name of the player
23 * @param color color of the player
24 */
25 public Player(String id, boolean color) {

26 super();

27 this.id = id;

28 this.color = color;

29 start();

30 }

31 /**
32 * This method is an abstract form with is used by Jess and Human
33 * to tell where to move their pieces.
34 */

35

36 abstract public void play();

37

38 /**
39 * run the new thread
40 */

41 public synchronized void run() {

42 while (!Checker.getInstance().isOver()) {

43 while (turn != this) {

44 try {

45 wait();

46 } catch (InterruptedException e) { return ;}

47 }

48 Checker.getInstance().displayMessage("Player (" + (color?"white":"red")+ ") "+ id + " `s turn");

49 if (Board.getInstance().count(!color) == 0)

50 {Checker.getInstance().win(color);}

51 else if (Board.getInstance().count(!color) == 0)

52 {Checker.getInstance().win(color);}

53 play();

54 turn = null;

55 }

56 }

57 /**
58 * This method is used to synchronized the players so that only one player gets the next turn.
59 * @param p next player
60 */
61

62 public synchronized void setNext(Player p) {

63 next = p;

64 }

65 /**
66 * This method is used to synchronized the hasturn so that only one player can move a piece.
67 */
68 public synchronized void hasTurn(){

69 turn = this;

70 Checker.getInstance().turn = color;

71 turn.notify();

72 }

73 /**
74 * This method is used to synchronized the getturn so that only get the turn and has the ablity to move a piece.
75 * @return the player who"s got the turn
76 */
77 public synchronized Player getTurn(){

78 return turn;

79 }

80 /**
81 * This method is used to convert the player informaation into a string.
82 * @return a string containing the information of the player
83 */
84 public String toString() {

85 return turn.id + " " + (turn.color ? "white" : "red");

86 }

87 }

88

	checkers/SelectDialog.java

 1 /*
 2 * SelectPanel.java
 3 *
 4 * Created on 3 December 2004, 13:42
 5 * @author k380h11
 6 */
 7 package checkers;

 8

 9 import javax.swing.*;

 10 import javax.swing.border.*;

 11 import javax.swing.table.*;

 12 import java.awt.*;

 13 import java.awt.event.*;

 14 import java.util.*;

 15 import jess.*;

 16 /**
 17 * This dialog is a kind of jess (facts) commands ameliorated. In fact, when this dialogs is opens, two jess queries are sent to the database and the results are displayed in the two tables. The first table represents all the movement calculated by Jess. The second shows the actual and probable future positions of the pieces.
 18 * Five inputs are present to enquire for specific movement in order to reduce the list of reply. Unfortunately, this option was foreseen, but has not been implemented. However, the widget are leaved for next amelioration of the program.
 19 * They con be used by implementeing the falowing code for example:
 20 * <pre>
 21 * Checker.r.reset ();
 22 * Checker.r.executeCommand("(assert (deepness "+ (String) levelInput.getText () + " " + (String) colorSelect.getSelectedItem () +"))");
 23 * Checker.r.executeCommand("(focus MOVEMENT)");
 24 * Checker.r.executeCommand("(run)");
 25 * </pre>
 26 * @author k31380h11
 27 */
 28

 29

 30 public class SelectDialog extends JDialog {

 31

 32 /**
 33 * This method set the conditions for the game"s graphical user interface.
 34 */
 35 public SelectDialog () {

 36 super ();

 37 String title = "Movement";

 38 String laf = UIManager.getSystemLookAndFeelClassName ();

 39 try {

 40 UIManager.setLookAndFeel (laf);

 41 } catch (UnsupportedLookAndFeelException exc) {

 42 System.err.println ("Warning: UnsupportedLookAndFeel: " + laf);

 43 } catch (Exception exc) {

 44 System.err.println ("Error loading " + laf + ": " + exc);

 45 }

 46

 47 addWindowListener (new WindowAdapter () {

 48 public void windowClosing (WindowEvent evt) {

 49 hide ();

 50 }

 51 });

 52 setResizable (true);

 53 setTitle (title);

 54 setLocation (200, 200);

 55 JLabel titleLabel = new JLabel ();

 56 titleLabel.setFont (new Font ("MS Sans Serif", 1, 18));

 57 titleLabel.setHorizontalAlignment (SwingConstants.CENTER);

 58 titleLabel.setText (title);

 59

 60 SelectPanel selectPanel = new SelectPanel ();

 61

 62 getContentPane ().add (titleLabel, BorderLayout.NORTH);

 63 getContentPane ().add (selectPanel, BorderLayout.CENTER);

 64 pack ();

 65 }

 66

 67 /**
 68 * main panel
 69 */

 70 public class SelectPanel extends JPanel {

 71

 72 /** Creates new form SelectPanel */
 73 public SelectPanel () {

 74 pieceSelect = new JComboBox ();

 75 actionSelect = new JComboBox ();

 76 colorSelect = new JComboBox ();

 77 pointInput = new JTextField ();

 78 pieceLabel = new JLabel ();

 79 colorLabel = new JLabel();

 80 actionLabel = new JLabel ();

 81 pointLabel = new JLabel ();

 82 levelLabel = new JLabel ();

 83 levelInput = new JTextField ();

 84 searchButton = new JButton ();

 85 jScrollPane = new JScrollPane ();

 86 movementTable = new JTable ();

 87 jScrollPane2 = new JScrollPane ();

 88 PieceTable = new JTable ();

 89 add (pieceSelect);

 90 add (actionSelect);

 91 add(colorSelect);

 92 add (pointInput);

 93

 94 pieceLabel.setText ("Piece");

 95 add (pieceLabel);

 96

 97 colorLabel.setText("Color");

 98 add(colorLabel);

 99

100 actionLabel.setText ("Action");

101 add (actionLabel);

102

103 pointLabel.setText ("Point");

104 add (pointLabel);

105

106 levelLabel.setText ("Level");

107 add (levelLabel);

108

109 add (levelInput);

110

111 searchButton.setText ("Search");

112 searchButton.addActionListener (new ActionListener () {

113 public void actionPerformed (ActionEvent evt) {

114 searchButtonActionPerformed (evt);

115 }

116 });

117 add (searchButton);

118

119 jScrollPane.setBorder (new SoftBevelBorder (BevelBorder.RAISED));

120 movementTable.setRowSelectionAllowed (false);

121 jScrollPane.setViewportView (movementTable);

122 add (jScrollPane);

123

124 jScrollPane2.setBorder (new SoftBevelBorder (BevelBorder.RAISED));

125 PieceTable.setRowSelectionAllowed (false);

126 jScrollPane2.setViewportView (PieceTable);

127 add (jScrollPane2);

128 init ();

129 }

130

131 /**
132 * This method is used to set up the window for the searchButton by collectin information from Jess.
133 * The information that it need arer the facts of the piece at all levels.
134 *@throws an Jessexception if the java program was unable to get the information from Jess.
135 */
136

137 private void searchButtonActionPerformed (ActionEvent evt) {

138 ArrayList resultMovement = new ArrayList ();

139 ArrayList resultPiece = new ArrayList ();

140 try {

141 Checker.r.executeCommand ("(defquery search (MOVEMENT::movement (point ?point) (level ?level) (action ?action) (numberOfAction ?numberAction) (next ?next)))");

142 Checker.r.store ("RESULT", Checker.r.runQuery ("search", new ValueVector ()));

143 Checker.r.executeCommand ("(store RESULT (run-query search))");

144 Iterator it = (Iterator) Checker.r.fetch ("RESULT").externalAddressValue (null);

145

146 while (it.hasNext ()) {

147 Token token = (Token) it.next ();

148 resultMovement.add (token.fact (1));

149 }

150 Checker.r.executeCommand ("(defquery searchPiece (MAIN::Piece (PRS ?next) (OBJECT ?piece) (number ?number) (color ?color) (level ?level) (virtual ?virtual) (king ?king)))");

151 Checker.r.store ("RESULT2", Checker.r.runQuery ("searchPiece",new ValueVector ()));

152 Checker.r.executeCommand ("(store RESULT2 (run-query searchPiece))");

153 it = (Iterator) Checker.r.fetch ("RESULT2").externalAddressValue (null);

154 while (it.hasNext ()) {

155 Token token = (Token) it.next ();

156 resultPiece.add (token.fact (1));

157 }

158 } catch (JessException e) {System.err.println (e);}

159

160 if (resultMovement != null) {

161 int resultSize = resultMovement.size ();

162 String listData[][] = new String[resultSize][9];

163 String title[] = {"Number", "Color", "Square", "Point","NOA", "Div", "Action", "Level", "Next"};

164

165 for (int i = 0; i<resultSize ; i++) {

166 try {

167 Fact fact = (Fact) resultMovement.get (i);

168 Piece piece = (Piece) fact.getSlotValue ("piece").externalAddressValue (null);

169 Grid.Square curent = piece.getSquare ();

170 int number = piece.getNumber ();

171 boolean color = piece.getColor ();

172 Grid.Square next = (Grid.Square) fact.getSlotValue ("next").externalAddressValue (null);

173 double pts = Double.parseDouble(fact.getSlotValue ("point").toString ());

174 String Action = fact.getSlotValue ("action").toString ();

175 String level = fact.getSlotValue ("level").toString ();

176 double numberOfAction = Double.parseDouble(fact.getSlotValue ("numberOfAction").toString ());

177 listData[i][0] = Integer.toString (number);

178 listData[i][1] = color ? "white" : "red";

179 listData[i][2] = curent.toString ();

180 listData[i][3] = Double.toString(pts);

181 listData[i][4] = Double.toString(numberOfAction);

182 listData[i][5] = Double.toString(pts / numberOfAction);

183 listData[i][6] = Action;

184 listData[i][7] = level;

185 listData[i][8] = next.toString ();

186 } catch (JessException e) {System.err.println (e);}

187 }

188 movementTable.setModel (new DefaultTableModel (listData,title));

189 }

190 if (resultPiece != null) {

191 int resultSize = resultPiece.size ();

192 String listData[][] = new String[resultSize][6];

193 String title[] = {"square", "number", "color", "level", "virtual", "king"};

194

195 for (int i = 0; i<resultSize ; i++) {

196 try {

197 Fact fact = (Fact) resultPiece.get (i);

198 listData[i][0] = fact.getSlotValue ("square").externalAddressValue (null).toString ();

199 listData[i][1] = fact.getSlotValue ("number").toString ();

200 listData[i][2] = fact.getSlotValue ("color").toString ();

201 listData[i][3] = fact.getSlotValue ("level").toString ();

202 listData[i][4] = fact.getSlotValue ("virtual").toString ();

203 listData[i][5] = fact.getSlotValue ("king").toString ();

204 } catch (JessException e) {System.err.println (e);}

205 }

206 PieceTable.setModel (new DefaultTableModel (listData,title));

207 }

208 }

209 /**
210 * This method set bounds for the graphical user interface.
211 * This is done give parameter where to start and end i pixels
212 * and causes this container to lay out its components.
213 */

214

215 public void doLayout () {

216 pieceSelect.setBounds (20, 40, 90, 20);

217 actionSelect.setBounds (210, 40, 80, 20);

218 colorSelect.setBounds(130, 40, 60, 20);

219 pointInput.setBounds (310, 40, 40, 20);

220 pieceLabel.setBounds (20, 10, 40, 20);

221 colorLabel.setBounds(130, 10, 40, 20);

222 actionLabel.setBounds (210, 10, 40, 20);

223 pointLabel.setBounds (310, 10, 40, 20);

224 levelLabel.setBounds (360, 10, 40, 20);

225 levelInput.setBounds (360, 40, 40, 20);

226 searchButton.setBounds (420, 40, 70, 20);

227 jScrollPane.setBounds (20, 90, 500, 120);

228 movementTable.setBounds (20, 90, 500, 120);

229 jScrollPane2.setBounds (20, 240, 500, 120);

230 PieceTable.setBounds (20, 240, 500, 120);

231 }

232

233 /**
234 * This method is used to set minimum size of the graphical user interface window .
235 * @return the dimension height, width.
236 */

237 public Dimension getMinimumSize () {

238 return new Dimension (550,380);

239 }

240

241 /**
242 * This method is used to set preferred size of the graphical user interface window .
243 * @return the dimension height, width.
244 */
245 public Dimension getPreferredSize () {

246 return new Dimension (550,380);

247 }

248 /**
249 * This method is used initilize the graphical user interface window .
250 * the method calls other methods to initilize board .
251 */

252 public void init () {

253 actionSelect.addItem ("");

254 actionSelect.addItem ("eat");

255 actionSelect.addItem ("move");

256 colorSelect.addItem (Boolean.toString(Checker.getInstance().getTurn()).toUpperCase ());

257 colorSelect.addItem (Boolean.toString(!Checker.getInstance().getTurn()).toUpperCase ());

258 levelInput.setText("0");

259 pieceSelect.addItem (null);

260 searchButtonActionPerformed (null);

261 }

262

263 private JLabel actionLabel;

264 private JComboBox actionSelect;

265 private JTable movementTable;

266 private JTextField pointInput;

267 private JLabel pointLabel;

268 private JLabel pieceLabel;

269 private JComboBox pieceSelect;

270 private JScrollPane jScrollPane;

271 private JScrollPane jScrollPane2;

272 private JTable PieceTable;

273 private JComboBox colorSelect;

274 private JLabel colorLabel;

275 private JTextField levelInput;

276 private JLabel levelLabel;

277 private JButton searchButton;

278

279 }

280 }

Figure 1.1 Example of allowed movement

Figure 3.7 Select Dialog Screenshot

Figure 3.6 Main Dialog Screenshot

Figure 3.4 Relative movement

Figure 3.3 Command example

Figure 3.2 Player inheritance

Figure 3.1 Game mode

Figure 2.1 Module relationship

Figure 1.2 the Grid system coordinate

Reasoning

Java

SMRJava

Movement

Java

� EMBED Visio.Drawing.11 ���

Niels Petersen	Studienr: s021960

Mathieu Texier	Studienr: s041692

Technical University of Denmark
[image: image19.png]

_1164717580.vsd
empty

men

king

_1164799268.vsd
Row

Col

X

Y

(0,0)

(0,0)

(5,0)

(7,7)

_1164816444.vsd
+init() : void

#action : Action

«abstract»
Panel

Title
￼

+play() : void
+hasTurn():void

- turn : int
-next:Player

«abstract»
Player

+play() : void

- color : bolean
-id : String

Human

+play() : void

- color : bolean
-id : String

Jess

+ main(String[] argv) : void
+ win(Player) : void

+ r : Rete
- Player[] : Player

«singleton»
Checkers

jump(:Square)
move(:Square)

- color : boolean
- number : int
- king : boolean
- square : Square

Piece

«singleton»
Board

LinkedList

Thread

getSquare(int row, int col) : Square

- square[][] : Square

«singleton»
Grid

JPanel

Canvas

+isFree() : boolean
+setFree(:boolean)

-row : int
-col : int
-SQcolor : boolean

Grid.Square

SelectDialog

JDialog

Classes overview
Figure 3.5

_1164723978.vsd
PPLS

PLS

PPRS

PRS

NNLS

NLS

NNRS

NRS

_1164441065.vsd
+init() : void

#action : Action

«abstract»
Panel

+play() : void
+hasTurn():void

- turn : int
-next:Player

«abstract»
Player

+play() : void

- color : bolean
-id : String

Human

+play() : void

- color : bolean
-id : String

Jess

Thread

